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Regularization  

Encouraging sparsity:  regularization  

Sparsity of : Number of non-zero coefficients in .

the good, the bad and the ugly

Choose 

Good: "Information-theoretically" good! (need less data to learn) 

Suppose weights in  are in 

1.How many such -sparse vector are there in dimensions? 

We have  elements, need to fill  non-zero elements.

Answer:  possibilities. 

2.How much data to learn?

About  samples to learn (using the theorem from last time, note that we're ignoring  here):



3.How many free parameters?

 choose  coordinates: need  bits (every bit is like a parameter you need to learn) per coordinate -> 
 in total.

 choose the value for non-zero coordinates: fix  values  in total.

In contrast, without -sparsity need about  samples in  dimensions ( In this case,  ).

 If  , need   less data to learn!

Bad:  is non-convex (  is non-convex)

minimizing  is NP-hard.

Ugly:  is highly-discontinuous

GD has no hopes!

 regularization as a proxy for  

Choose 

 is convex. Can use GD / SGD to solve.

Minimizing  , often suffices to minimize .

Theorem. Given  vectors  drawn i.i.d. from  , let  for some  with 
 . Then for some fixed constant  , the minimizer of  with  will be  as 

long as  (with high probability over the randomness in the training datapoints  ).

Optimization problem:  , subject to  .



Diving deeper:  and  regularization for the "isotropic" case  

Isotropic assumption: 

Isotropic informally means,

all features have mean 

all features have variance 

features are uncorrelated

Now,  

 menas  coordinate of  ,  means  row of  ,  menas correlation of  feature with label.

 regularization "shrinks" the estimated parameters.

Note: when features have unequal variance,  regularization applies similar shrinkage to all of them.

 scaling features can be important.



what is gradient of  ?

At  , we have a sub-gradient, ignore for now.

For  .

 is  coordinate of 

 GD steps: 

Let‘s understand the gradient.

First, without  regularization,

 regularization is forcing you to zero!

with  regularization: GD always has a shift of  , which pushes towards  .

Let  

Using sub-gradients, we can show that for the  regularized case:



Bias-variance tradeoff  

The phenomenon of underfitting and overfitting is often referred to as the bias-variance tradeoff in the 
literature.

A model whose complexity is too small for the task will underfit. This is a model with a large bias because the 
model’s accuracy will not improve even if we add a lot of training data.

A model whose complexity is too large for the amount of available training data will overfit. This is a model with 
high variance, because the model’s predictions will vary a lot with the randomness in the training data (it can 
even fit any noise in the training data).

Kernels  

Let’s continue with regularized least squares with non-linear basis:

 . This operates in space  and  could be huge (and even infinite).

By setting the gradient of  :



we know:

Thus the least square solution is a linear combination of features of the data points!

This calculation does not show what  should be, but ignore that for now.

Why is this helpful?

Assuming we know  , the prediction of  on a new example  is

Therefore, only inner products in the new feature space matter!

Kernel methods are exactly about computing inner products without explicitly computing  .

Solving for  

Solving for , Step 1: Kernel matrix

Plugging in  into  gives

 is called Gram matrix or kernel matrix where the   entry is: 

 :  dimensions, entry

 :  dimensions, entry

both are symmetric & positive semi definite (psd)

*psd: Any matrix  is psd:

Solving for , Step 2: Minimize the dual

Minimize (the so-called dual formulation)

Setting the derivative to  we have



Thus  is a minimizer and we obtain

The kernel trick  

Minimizing  gives  .

Minimizing  gives  .

Note  has different dimensions in these two formulas.

Natural question: are the two solutions the same or different?

They have to be the same because  has a unique minimizer!

And they are:

If the solutions are the same, then what is the difference?

First, computing  can be more efficient than computing  when  (
).

More importantly, computing  also only requires computing inner products in the new 
feature space  !

Now we can conclude that the exact form of  is not essential; all we need to do is know the inner products 
 .

For some "it is indeed possible to compute  without computing / knowing ". This is the kernel 
trick.





Kernel Functions  

Definition: a function  is called a kernel function if there exists a function  so 
that for any ,

Examples:



Choosing a nonlinear basis  becomes equivalent to choosing a kernel function.

As long as computing the kernel function is more efficient, we should apply the kernel trick.

Gram/kernel matrix becomes:

Determin Kernel  

In fact,  is a kernel if and only if  is positive semi-definite for any  and any  (Mercer 
theorem).

For any function  ,  is a kernel.

What is  ?  .

If  and  are kernels, then the following are also kernels:

conical combination: 
product: 
exponential: 

These are not kernels:

How to determine a function is a kernel?

First, calculate  .  must be positive semi-definite.

If not, then it isn't a kernel.



How to prove psd? Math in ML: p118

All 's leading principal minor determinant should  .
All  eigenvalue 
There exists a invertible  , 

Popular kernels  

1.Polynomial kernel:

What is the corresponding  ?

 , we saw earlier:  .

The case of larges  can be obtained by applying this seperately.

2.Gaussian kernel or Radial basis function (RBF) kernel:

for some  .

What is the corresponding  ?



transformation for the product.

each of these is a polynomial kernel.

 dimensional feature space.

Prediction with kernels  

As long as , prediction on a new example  becomes

This is known as a non-parametric method. Informally speaking, this means that there is no fixed set of 
parameters that the model is trying to learn (remember  could be infinite). Nearest-neighbors is another 
non-parametric method we have seen.

LR, logistic, bayesian, NN and perceptron are parametric methods.

SVM, knn, decision tree, and algorithm with kernels are non-parametric methods.
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