Lecture 4

Lecture 4

Regularization
Encouraging sparsity: [y regularization
l1 regularization as a proxy for [,
Diving deeper: Iy and [regularization for the "isotropic" case
Bias-variance tradeoff

Kernels
Solving for
The kernel trick
Kernel Functions
Determin Kernel
Popular kernels
Prediction with kernels

Regularization
Encouraging sparsity: [regularization
Sparsity of w: Number of non-zero coefficients in w.
the good, the bad and the ugly
Choose ¥ (w) = ||w||o
G(w) = (whz; —yi)* + Alwllo
i=1
Good: "Information-theoretically" good! (need less data to learn)
Suppose weights inw are in {—w, —w+1,---,0,---,w}
1.How many such s-sparse vector are there in dimensions?

We have 2w elements, need to fill $ non-zero elements.

d d
Answer: ()(2w)s possibilities. () =C;
S s
2.How much data to learn?

About log(|F’|) samples to learn (using the theorem from last time, note that we're ignoring g, 0 here):

105 (£) (2u)") = stog(2) + stogtzu) - (({) = (D)

S S

3.How many free parameters?

— choose s coordinates: need log d bits (every bit is like a parameter you need to learn) per coordinate ->
slogd in total.

— choose the value for non-zero coordinates: fix s values = slog d in total.

In contrast, without s-sparsity need about =~ d samples in d dimensions (In this case, d = s).
. Ifs < d, need less data to learn!

Bad: ||w||o is non-convex (||w||p, p < 1is non-convex)

minimizing G(w) = Y1 (wTz; — y;)? + Al|w||o is NP-hard.

Ugly: ||w]||o is highly-discontinuous

GD has no hopes!

[1 regularization as a proxy for [

Choose ¥ (w) = ||lw||1

n

G(w) =Y (we; — y:)* + Allw|h

i=1

||w||1 is convex. Can use GD / SGD to solve.

Minimizing ||w||1 , often suffices to minimize ||w||o.

Theorem. Given n vectors {z; € R%,i € [n]} drawn i.i.d. from N(0,I), lety; = w*T x; for some w* with
l|lw||o = s . Then for some fixed constant C' > 0, the minimizer of G(w) with ¢¥(w) = ||w]||1 will be w* as
long asn > C' - slogd (with high probability over the randomness in the training datapoints x;).

Optimization problem: arg min,, RSS(w) , subject to ¥(w) < 8.

Optimization problem: argmin,, RSS(w) , subject to (w) < 8 Conlons b‘ng :

lines a(.owg
Wy LSS(\U\
femans boud

W

BSSUG) = (| XKoo - yl:—

WD = Lwly, Vw) = (lll 2

Adapted from ESL
Diving deeper: [and [; regularization for the "isotropic" case
Isotropic assumption: X7 X = I
Isotropic informally means,
all features have mean 0
all features have variance 1

features are uncorrelated

p(w) = ||w][3

G(w) =) (2w —y:)* + w3

i=1
w* = (XTX + AI) ' XTy

Now, XTX =T = w* = HLAXTy

" 1 1
wi() = T3 XY

w} menas jth coordinate of w*, X ;) means jth row of X, X(:’;.)y menas correlation of jth feature with label.

J

l5 regularization "shrinks" the estimated parameters.
Note: when features have unequal variance, l5 regularization applies similar shrinkage to all of them.

.. scaling features can be important.

p(w) = |Jwly

what is gradient of |w| ?

ow| 1 w>0
ow -1 w<O0

Atw = 0, we have a sub-gradient, ignore for now.
For w; # 0(jth coordinate of w) .

oG n
(w) =2 (xfw — ;)% ; + Asign(w;)
i—1

6’[Uj

x; jis jth coordinate of z;

3

0G(w)

3wj

n
=2 (zijaiw)—2 Z z; ;Y + Asign(w;)
i—1 i=1

= 2w; — 2X(Tz.)y + Asign(w;)
. GD steps: w; + w; — n(2(w; — X(:%y) + Asign(w;))
Let's understand the gradient.

First, without [, regularization,
w; — wj — n2(w; — X(f)y)
l1 regularization is forcing you to zero!
with I regularization: GD always has a shift of —pAsign(w;) , which pushes towards 0 .
Let B; = X(Ti)y

Using sub-gradients, we can show that for the [regularized case:

A A
Bi—2,Bi>7%
_ A
wj = 0, |:BJ|<7

A A
Bito, Bi<—%

Summary: Isotropic case (XTX = I).
Let B; = X{(;)y

No regularization w; = p;

¢, regularization w; = B;/(1+ 1)

Bi—A/2,Bj > 4/2
¢, regularization w; = 0,|Bj| = 4/2
o Bi +1/2,B; < —1/2

Bias-variance tradeoff

The phenomenon of underfitting and overfitting is often referred to as the bias-variance tradeoff in the
literature.

A model whose complexity is too small for the task will underfit. This is a model with a large bias because the
model’s accuracy will not improve even if we add a lot of training data.

A model whose complexity is too large for the amount of available training data will overfit. This is a model with
high variance, because the model’s predictions will vary a lot with the randomness in the training data (it can
even fit any noise in the training data).

Kernels
Let's continue with regularized least squares with non-linear basis:
w* = arg min F(w)
= argmin(||®w — y|[3 + Al[w|3)
= (®T® + \I) '@y

€ R™™ This operates in space R™ and m could be huge (and even infinite).

¢($1)T Y1

¢(«'L’2)T Y2
P cprim = : Yerr =

¢(xn)T Yn

By setting the gradient of Fl(w) = 0:

3T (dw* —y) + Iw* =0

we know:

Lo T -

w = 387y @) = #Ta =) ais(e)
=1

Thus the least square solution is a linear combination of features of the data points!

This calculation does not show what « should be, but ignore that for now.

Why is this helpful?

Assuming we know « , the prediction of w* on a new example z is
n
T T
w* () = Zo‘i ¢(z:)9(z)
i=1

Therefore, only inner products in the new feature space matter!
Kernel methods are exactly about computing inner products without explicitly computing ¢ .
Solving for o

o=ty u)

>

Solving for o, Step 1: Kernel matrix
Plugging in w = ®Ta into F(w) gives

H(a) = F(®Ta)
= |28 — y||3 + Al|® |3
= ||Ka — 9|3 + \a’KaK

K = ®®T ¢ R™" s called Gram matrix or kernel matrix where the (4, j)s, entry is:
K j = ¢(zi) ()
®3T : ny x n dimensions, entry(i, j) = ¢(z;)T¢(z;)
®T® : m x m dimensions, entry(z,5) = > r_; d(xk)id(zk);
both are symmetric & positive semi definite (psd)
*psd: Any matrix A = UU T is psd:
2T Azr = 2TUU 2 = ||[UTz||2> 0
Solving for o, Step 2: Minimize the dual
Minimize (the so-called dual formulation)
H(a) = ||Ka —y||3 + X' Ka

Setting the derivative to 0 we have

0=(K?>+AK)a— Ky=K((K+ M)a—1y)

Thus o = (K + AI)lyis a minimizer and we obtain
w* =&Ta =T (K +\) 'y
The kernel trick
Minimizing F'(w) gives w* = (®7® + AI) " 1®Ty (®T® is covariance) .
Minimizing H () gives w* = ®T(®®T + \I) "1y (2®7 is kernel) .
Note I has different dimensions in these two formulas.
Natural question: are the two solutions the same or different?
They have to be the same because F'(w) has a unique minimizer!
And they are:
(®T® + AI) 1@y
= (7% + M) '@T(®3T + AI)(29T + M) 1y
= (7% 4+ M) H(@T23T + AT (@3 + AI) 'y

= (®T® + AI) H(®T® + A)®T(®dT + M)y
= o7 (@37 + M)y

If the solutions are the same, then what is the difference?

First, computing (#®7 + AI)~! can be more efficient than computing (®7® + AI) ! when n < m (
O(n?) vs O(m?)).

More importantly, computing « = (K +)\I)_ly also only requires computing inner products in the new
feature space !

Now we can conclude that the exact form of ¢(+) is not essential; all we need to do is know the inner products
T
¢(z)" $(z') .

For some "it is indeed possible to compute ¢(z)T ¢(z") without computing / knowing ¢". This is the kernel
trick.

The kernel trick: Example 1

Consider the following polynomial basis ¢ : R? — R3:

2

L1
W= [:L ¢(£D) = \/§£21.L2
L3

What is the inner product between ¢(x) and ¢(x’)?

o(z) p(a') = "5124'5/12 + 2wqwouxwy + LL'222L"22

= (zq2] + ;1:2:1:'2)2 = (mT:c')2

Therefore, the inner product in the new space is simply a function of the inner product
in the original space.

The kernel trick: Example 2

¢ : R — R?4 is parameterized by

cos(fz)
1. sin(0zxq)
x= 1;" Po(x) = :
' cos(0zy,)
e sin(6z,y,)

What is the inner product between ¢y () and ¢y(x’)?

d
o) (') = Z cos(Oxp,) cos(z),) + sin(Ozy,) sin(fz],)
m=1
d
= cos(0(zm — 1)) (trigonometric identity)
m=1

Once again, the inner product in the new space is a simple function of the features in
the original space.

The kernel trick: Example 3

Based on ¢,, define ¢; : R? — R24(L+1) for some integer L:

$o()
b2z () ® wniv fum
¢r(@) = ¢2%f<-"’> (e;a -, 20)
¢L2T"(w)
What is the inner product between ¢; (x) and ¢ (z')?
L
1@ 0L (@) = hazs (@) G 2ze (')
=0
I a
. g mzzlcos (%M(xm mm))

The kernel trick: Example 4
When L — oo, even if we cannot compute ¢(z) (since it’s a vector of infinite dimen-

sion), we can still compute inner product:
p p 9 Uorge O o scammobion & infenal

Poo () oo (@) = /%Zcos —a7,)) d6

Again, a simple function of the original features.

Note that when using this mapping in linear regression, we are learning a weight w*
with infinite dimension!

Kernel Functions

Definition: a function k : R x R? — R is called a kernel function if there exists a function ¢ : R — R™ so

that for any z, 2’ € R¢,

k(z, 2') = ¢(z)" ¢(z")

Examples:

k(z,z') = (z2T2")?

k(z,z') = (zT2' — 1)

4 sin(2n(x,, — '
ooty = S ST~ 21)

Ty —

m=1 m

/ 12
k(z,z") = exp(—||lz — z'[3)
Choosing a nonlinear basis ¢ becomes equivalent to choosing a kernel function.
As long as computing the kernel function is more efficient, we should apply the kernel trick.

Gram/kernel matrix becomes:

k(zy,21) -+ k(z1,2,)
K=%3" = _
k(xp,z1) -+ k(zn, z,)
Determin Kernel
In fact, k is a kernel if and only if K is positive semi-definite for any n and any x1, z2, - - -, ,, (Mercer

theorem).

For any function f : R — R, k(x,z') = f(z)f(z') is a kernel.
Whatis¢? ¢ : R? — R, ¢(z) = f(z) .

If k1(-,-) and k2 (-, -) are kernels, then the following are also kernels:

e conical combination: aky (-,) + aka(-,-), if o, >0
e product: k1(+,-) - ka(+,-)
e exponential: ¢*(+)

These are not kernels:

° _k('7')
o In(k(-,-))

o ki — ko
How to determine a function is a kernel?
k(x1,z1) -+ k(zi,z,)
First, calculate K = ®®7 = o L o . K must be positive semi-definite.
k(xp,z1) -+ k(zn,)

If not, then it isn't a kernel.

Function
k(z, o) = |z — '3

is not a kernel, why?

If it is a kernel, the kernel matrix for two data points &1 and Z5: s “1'3 B -2 .
bty

0 |1 — 2|3
-
(|x1 — @213 0

must be positive semidefinite, buz is it?

0 w a wet ped Why?
\ 0

N () ()

How to prove psd? Math in ML: p118

e All A's leading principal minor determinant should > 0 .
e All A eigenvalue > 0
e There exists a invertible P, A = PTP

Popular kernels

1.Polynomial kernel:
k(z,z') = (272’ +)M

What is the corresponding ¢ ?

2
L1

c=0,M = 2,wesaw earlier: () = | v/2z1z5
2
Ly
The case of larges m can be obtained by applying this seperately.

2.Gaussian kernel or Radial basis function (RBF) kernel:

||w—w’||§>

k(z,z') = exp(— 53

forsomeo > 0.

What is the corresponding ¢ ?

T,/

Ko, a') = exp(_ [lz][3) exp(_ 12']13) exp(_ =’z)
’ 202 202 202

k(z,z') = f(z)f(z'), where f(z) = exp(— ||m||2)

202

transformation for the product.

xTx! 'z

1 (a?T;I:')2

1 ({ET%’,)B

exp(—5—) =1+

o3
each of these is a polynomial kernel.
oo dimensional feature space.

Prediction with kernels

(02)2 3! (0?)3

Aslong asw* = Y I | a;¢(z;), prediction on a new example x becomes

W) = 3 alola)olx) = 3 ikl o)

This is known as a non-parametric method. Informally speaking, this means that there is no fixed set of
parameters that the model is trying to learn (remember w* could be infinite). Nearest-neighbors is another

non-parametric method we have seen.

LR, logistic, bayesian, NN and perceptron are parametric methods.

SVM, knn, decision tree, and algorithm with kernels are non-parametric methods.

	Lecture 4
	Regularization
	Encouraging sparsity: l_0 regularization
	l_1 regularization as a proxy for l_0
	Diving deeper: l_2 and l_1 regularization for the "isotropic" case
	Bias-variance tradeoff

	Kernels
	Solving for \alpha
	The kernel trick
	Kernel Functions
	Determin Kernel
	Popular kernels
	Prediction with kernels

